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Abstract. The adequacy of the power spectrum to characterize the variations of a parameter depends

on whether or not the parameter has a Gaussian distribution. We here perform very simple tests of

Gaussianity  on the distributions of the magnitudes of the interplanetary magnetic field, and on the

distributions of the components i.e. wc find the first four cumulants of the distributions (mean, variance,

skewness and kurtosis). We find that the traditional distributions of the one hour averaged magnitude

are not distributed normally or log-normally as has often been assumed and the one hour averaged z

component is found to have a non-zero kurtosis. Thus the power spectrum is insufficient to completely

characterize these variations and polyspectra  are needed. We have isolated variations in the 1/f

frequency region of the spectrum and show that the distributions of the magnitudes have non-zero

skewness and kurtosis, the magnitudes are not distributed log-normally, and the distributions of the

components have non-zero kurtosis. Thus higher order spectra are again needed for a full

characterization. The origin of the 1/f spectrum is discussed and a model for the production of the

corresponding magnetic fluctuations is suggested.

Introduction

Recent progress in the study of the fluctuations of the magnetic field in space have re-emphasized  the

importance of the distributions of the observed magnetic field parameters. In particular, if the

fluctuations of a quantity have a Gaussian distribution then the power spectrum is sufficient to

characterize these fluctuations. However, if a parameter, such as the magnetic field magnitude, is not



distributed normally, higher order statistical moments and higher order spectra arc required to

complctc]y dcscribc the fluctuations (Brillingcr and Roscnblatt,  1967, Pric@.tley,1991  ). Although the

power spectrum of the interplanetary field variations have been studied cxtcnsivcly (see for example

review by Roberts and Goldstein, 1991) the question of the adequacy of the power spcctrurn  to

completely characterize the fluctuations has not been addressed. Here wc carry out such a study by

finding the statistical moments (cumulants)  of the distributions of the magnetic field fluctuations. The

data used in this study arc from the OMNITAI’E  supplied by the NSSDC (National Space Scicncc

Data Center). This tape contains a compilation of data from various spacecraft that were observing the

interplanetary medium in the vicinity of the Earth and is the most complctc  data set available for this

stud y. The time interval covcrcd in our study is from January 1,1973 to July 12,1991.

The first four moments (cumulants) of the distributions arc defined as follows
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where z > indicates averaging, xi arc the observed values of the variable, and N is the numhcr of data

points. The skewness is a measure of the lack of symmetry of the distribution. A positive (negative)

number indicates a higher number of large (small) values of the parameter than would be cxpcctcd for a

Gaussian distribution. The kurtosis is a measure of the flatness (negative value of k4 ) or pcakcdncss

(positive value of k4 ) of the distribution relative to a normal distribution with the same rncan and
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standard deviation. Note that while the mean and standard deviation

the measured quantities, the skewness and kurtosis  arc dimensionless.

have the same dimensions as

For a normal (Gaussian) distribution all cumulants  higher

k3, k4, . . . ,

than the second arc zero,

kn = O.

Observations

One Hour Averaged Dafa

Traditionally the interplanetary magnetic field distribution has been presented as a distribution of

hourly averages. Early measurements showed clearly that the one hour averages of the magnitude of

the field were not distributed normally. There was an c)bvious  high field tail that has been attributed

to solar wind associated with coronal mass ejections and with the compressions due to the interaction of

solar wind regions of different speeds (Hirshber&  1969, Neugebaucr,  1991). The solar cycle variation of

the mean has also been studied (cf. Hirshbcrg,  1969, Winterhalter et al., 1990). NO systematic studies

have been made of the solar cycle variations of the higher moments (variance, skewness and kurtosis)

of these distributions. Burlaga and King (1979) suggested that the distributions of the logarithms of

the field magnitudes and components could be well represented as normally distributed. In accordance

with this suggestion the mean of the distribution of the log of the onc hour average data has been

widely used, for example, in studies of the solar cycle changes in the intensity of the field (Slavin and

Smith, 1983). However no studies have been reported in which the log-normality of the distributions

has been formally tested. If the distributions are truly log-normal then the mean and standard

variation of the log distributions should completc]y characterize thcm and they should have no

higher cummulants  such as the skewness or the kurlosis.

In this section we study the solar cycle dcpcndcnce of the moments of the distributions of the hourly

averaged magnetic field and present, for first time, the solar cycle variation of the higher moments.
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Wc also test the hypothesis that the hourly averaged intensities of the magnetic field arc distributed

log-normally. Wc find that the distribution of logarithms is non-Gaussian and study the solar cycle

variation of the statistical rnomcnts,

A typical distribution of the onc hour averages of the magnetic field magnitude is shown in Figure la.

The fitted curve is a Gaussian that has the same mean and standard variation as the observed

distribution. The fit is obviously very poor. The high values of the skewness and the positive value of

the kurtosis reflect the Iargc number of high intensity values. This distribution has more large

amplitude deviations than a Gaussian distribution with the same mean a“nd standard deviation.

The four cumulants  for the magnitude B have been calculated for the years 1973 to 1990 and their solar

cycle variations are shown in Figure 2, panel a and b. The solar cycle variations of the mean has been

discussed in earlier studies (see for example Slavin and Smith, 1983). Figure 2a shows that sigma and

the mean follow each other closely throughout the solar cycle. The skewness and kurtosis (2b) are both

non-zero and positive. The kurtosis shows a strong solar cycle variation which differs from that of the

mean. The solar cycle dcpcndcnce of the skewness is less obvious but it appears to bc larger than

average in those years when the kurtosis is large. Note that the skewness and kurtosis  maximize in

1979, a sunspot maximum year, whereas the rncan magnitude maximizes three years later, in 1982.

Also of interest are the statistical moments of the distributions of the logarithms of the magnitude of B,

since B has been characterized as log-normal (King and Bur1aga,1979),  Figure lb shows a ‘typical

distribution of this quantity. The Gaussian is now a much better fit to the data. However the

distribution still exhibits skewness and kurtosis. In order to establish the reality of an observed

skewness or kurtosis some statistical considerations must bc taken into account. If a finite sample is

sclcctcd from an infinite Gaussianly  distributed parent population then the morncnts of the sample will

have observed values which are not the same as the moments of the parent distribution. If many such

samples arc drawn from the parent distribution then we will have a distribution of the moments of the
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samples. Now the observed values of the magnetic field can be considered to be a sample drawn from a

parent distribution which may or may not be Gaussian. Wc want to find the probability that wc would

have gotten the observed moments if the parent distribution had been Gaussian. If this probability is

small then the probability that the parent distribution was in fact Gaussian is small. The probability

that any particular value of the higher moments would be observed in a single sample drawn from a

parent population with a Gaussian distribution can be found from the statistical properties of the

distributions of the moments of samples, If wc assume the parent distribution was normally distributed

than the variance of the distribution of the skewness is estimated to be square root of 6/N, where N is

the number of objects in the sample, which is assumed to bc large. The variance of the kurtosis  is

estimated to be the square root of 24/N (see for example Press et al., 1986).

Figure 2 panel c and d shows the solar cycle variation of the moments of the distribution of log B. The

rncan shows the WCII known solar cycle variation (King, 1979; Slavin and Smith, 1983). The skewness is

usually positive, although small negative values occur. Using the typical sample size for this data, we

estimate the variance of the skewness to be about 0.03. Although a few values of the observed skewness

fall within this uncertainty most of the values are many times that value, indicating that the

skewness is real and the distributions are samples of a non-Gaussian parent population. There also

appears to be a tendency for the skewness to be smallest around sunspot minimum and positive when the

sunspot number is higher. The case for the non-Gaussian distribution is made even more clearly by

considering the kurtosis. If each of the yearly samples had been drawn from a Gaussian parent

population then negative values of the kurtosis should be expected as frcqucnt]y as positive values.

Here the observed values arc much larger than the uncertainty of about 0.06 and, rnorc importantly, all

positive, There can bc no doubt that the kurtosis is non-vanishing and that therefore the distribution of

the hourly average magnitudes is not log-normal,

A typical distribution of the one hour averaged z component is shown in Figure lc. If the rnagnctic  field

were a Parker field with no disturbances than there would bc no z component in the ecliptic plane. The
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distribution shown has a mean which is essentially zero; however it has a substantial skewness and

kurtosis. The solar cycle dependencies for the z component are shown in Figure 2, panels c and f. Sigma

has a strong solar cycle variation that follows that of the magnitude. The skewness varies little with

the solar cycle and has a mean value of only 0.086 averaged over 17 years, indicating that the power in

the bispcctrum is very small for this data set. However the kurtosis  is substantial throughout the

period, indicating the importance of the trispectra for this data set.

Three hour averages: fhe I/f specfral  range

The variations in the observed magnetic field have different physical causes, depending on the size of

structure involved or the wave length of the disturbance. Matthaeus and Goldstein (1986) have studied

the spectrum of the magnetic field jntcnsity  at I AU and found that it could be broken into three

frequency regions, a very low frequency part (below 2.7 X10-6 Hz or about 100 hours), a 1 /f spectrum at

higher frequencies, and a Kolmogorov type spectrum at frequencies higher than 8.0x10-5 Hz,

corresponding to periods of about 3 hours. The boundaries of these frequency intervals approximately

correspond to a transition time needed to cover the distance from the Sun to 1 AU (100 hrs.), and to the

inverse correlation time for the magnetic field in the solar wind (about 3.4 hrs). The different spectral

behavior in each of these regions shows that the physics involved in producing the variations may also

be different. The distribution of the hourly averages discussed above depends on the behavior of all of

the variations of frequencies longer than 1 cycle/hour: the very low frequency region (including the

changes in B across high speed streams), the 1/f region, and some of the Kolmogorov variations. For

purposes of theoretical understanding it is important to study the distributions in each frequency range

separately. In the remainder of this paper we study the 1/f region.

To eliminate variations coming from the Kolmogorov range we used three hour averages of the data

since averaging acts as a low pass filter. To eliminate the contribution of the largest scale structures we

subtracted a 100 hour moving average from the components

magnitude of variations from those band passed components.

of the 3 hour data and constructed the

In this way we isolated the variations in
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the 1/f range. The statistical analysis of these band passed data

the same manner as it had been for the onc hour averaged data.

from 1973 to 1991 was carried out in

The distribution of the filtered magnitude, B, shown in Figure 3a, is very far from normal. This is an

important result because it indicates that the power spectrum of the magnetic field magnitude in this

frequency region is insufficient to completely characterize the variations of B. The higher order

spectra arc also required for a complctc characterization. The solar cycle variation of the moments of

the distribution of the band passed field magnitude are shown in Figure 4 panels a and b. The solar

cycle variation of the mean and sigma arc clearly seen and arc alike. Since sunspot maximum occurred

in 1979-1980 and in 1991, it is evident that the variations in this quantity are not in phase with the

sunspot cycle, as was WCII known for the unfiltered data. The skewness is always positive and far

larger than its cxpcctcd uncertainty of 0.05. Likewise the kurtosis is Iargc, positive and WCII outside

the uncertainty of 0.1. Thus the distributions of the magnitudes in the 1/f region arc non-Gaussian.

The distribution of log B shown in Figure 3b was found to be C1OSC to normal (Matthacus  and

Goldstcin,l  986) but it differs from normal as shown by the non-zero skewness and kurtosis. The solar

cycle variations of the mean and sigma (Figures 4c, 4d) differ only slightly from the time dcpcndcncics

presented in Figures 2c, 2d for the non-filtered data. The most interesting diffcrcnccs are in the

skewness and kurtosis.  The average skewness is -0.3 and all the values arc negative. The kurtosis is

consistently positive.

Two types of magnetic field power spectra appear in the literature, the spectrum of the magnitude of B

and the spectrum of the invariant trace of the components of B. In order to test the sufficiency of the

power spectrum to characterize the invariant trace spectra in the 1/f region, we must examine the

distributions of the components. The z component of the field is taken as an example and its distribution

in 1973 arc shown in Figures 3c. The solar cycle variation for the z component is shown in Figure 4,

panels c and f. As expected from symmetry arguments, the mean and skewness are zero. However, the
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kurtosis  is large and positive, showing that polyspectra  are required for a complete characterization of

the variations.

On the Origin of the 1/f Magnetic Noise

To explain the origin of the 1/f spectrum Matthacus  and Goldstein (1986) developed an interesting

model of multiplicative process which starts with a random distribution of relatively smaI1 magnetic

structures in the low solar atmosphere and develops in the region below the transonic point (where  the

solar wind becomes supersonic). In this region magnetic st ructurcs  of different sizes merge and reconnect

to form magnetic structures of progressively larger and larger sizes. After many steps the sizes of the

magnetic structures, as a multiplicative random variable, are expected to be log-normally distributed.

The 1/f spectrum is produced near the Sun, and then the s~ctrum,  in a frozen-in form, is transferred by

the solar wind through the hcliosphcre.  In this picture the 1/f spectrum would be a feature observed in

the solar wind only, not a feature observed in other systems in which magnetohydrodfiamic  turbulence

is developing.

Small-scale turbulence can be expected to have an effect on the interplanetary propagation of the 1 /f

spectrum. Such turbulence is observed in the solar wind in the form of an inertial, Kolmogorov type

spectrum at wavelengths smaller than the 1/f range. The collective effect of this small scale turbulence

can be described as an effective diffusivity which results in the exponential decay of every mode of the

1/f spectrum, The characteristic time of this decay depends (quadratically) on the wavelength of the

mode so that one can expect that 1/f modes with the smallest wavelengths will decay first, i.e. at

smaller heliocentric distances. Eventually the entire 1/f spectrum will decay. Whether or not this

effect will be observable depends on the time scale for the decay versus the time scale for the

production of the Kolmogorov variations in the same frequency range.

We would like to discuss here another possible mechanism of creating the 1/f spectrum. This

mechanism essentially involves the small-scale turbulence and the large-scale magnetic field not



9

considered in the above scenario. In the scenario discussed below wc do not assume that the 1/f

spectrum is crcatcd  below the transonic point or by processes specific to the Sun. Instead the 1/f

spectrum is actively crcatcd at all heliocentric distances provided only that there is a large-scale

magnetic field and small-scale turbulence.

The process under consideration produces magnetic fluctuations by simple kinematic deformations of the

large-scale field with a help of velocity fluctuations. To do this only a fcw characteristic times tc =

Lc/vc arc nccdcd, where Vc is the characteristic velocity at the scale Lc and is of the order of VA, Such

a mechanism was used earlier to derive a 1/k spectrum for the galactic magnetic field (Ruzmaikin and

Shukurov, 1982). Rcccnt numerical simulations of magnetic fluctuations produced by a random velocity

field in a large-scale magnetic field also show the 1/k spectrum (Brandenburg ct al., 1993). (In the

solar  wind a spatial 1/k spectrum will actually bc observed as a 1/f spectrum since f=kVsw, where Vsw

is the solar wind speed,) In this picture the 1/k spectrum appears at intermediate values of k bctwccn

the non-universal spectrum describing the Iargc scale (k small) variations input into the systcm and

the inertial spectrum of the Kolmogorov  type at higher k.

Although there is as yet no elaborated theory of the process, wc can present some order of magnitude

estimates. Consider a well conducting plasma in which a large-scale magnetic field, B, is disturbed by

chaotic hydrodynamic motions of the velocity, v. We may estimate the magnetic fluctuations, b,

produced in this way by using Ohm’s law E=q j. Here the electric field E w VXB, the current j = curl b,

and the turbulent rcsistivity q is dctcrmincd by the inertial spectrum with higher wave numbers in the

Kolmogorov  range. Thus, rewriting Ohm’s law in terms of the Fourier amplitudes, vk B = q k bk. It

follows that the spectral densities of the magnetic fluctuations, M(k), and velocity fluctuations, E(k),

arc related as

M(k)=  E(k) (q k)-2 B 2.

The substitution q2 K k-2vk2 oc k-l E(k) gives M(k) cc B2 k-l.
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We speculate that 1/k spectra appear as part of the transition from quasi-regular magnetic structures to

chaotic magnetic fluctuations during the development of turbulence. In the case of the solar wind the

quasi-regular magnetic structures emanate from the Sun and the chaotic fluctuations are the

Kolmogorov  variations (around a mean value) as observed at 0,3 AU and beyond, The number of

characteristic times, tc, that have transpired incrcascs  slowly with heliocentric distance. For

example as Lc/vc cc Lc2/3 for the Kolmogorov  spectrum compared with the passage time for the same

scale (Lc/vsw u Lc). Therefore one can expect that the boundary between the Kolmogorov type spectrum

and the 1/k spectrum moves towards the larger scales (low frequencies) with distance from the sun. The

observations indeed show such shrinking of the 1/f spectral region with heliocentric distance

(Goldstein et al., 1984).

Summary and Discussion

This paper is based on the recognition of the fact that if the distribution of a parameter is not Gaussian

then the power spectrum of that parameter does not completely characterize the quantity. Instead,

spectra of the higher order moments (polyspectra)  are also required. This is a corollary to the fact that

for a Gaussian the distribution is completely described by the first two moments of the distribution (the

mean and sigma). The higher order moments are all zero (for odd moments) or can be expressed in temw

of the mean and variance (for even moments). It then becomes important to test the Gaussian nature of

the distributions of the quantities for which the power spectra appear in the literature.

AS is well known, the distributions of the one hour averaged interplanetary field magnitude are non-

Gaussian, however, they have been said to be log-normal. We found that these data were not

distributed log-normally as had been stated earlier in the literature, The distribution of the

components of the one hour averaged magnetic field was also shown to be non-Gaussian.
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In order to isolate variations having separate physical causes wc used a

variations in the 1/f frequency range. The distribution of the magnitudes

variations was again found not to be normally distributed, showing that

insufficient to characterize them.

11

bandpass filter to isolate

and components of these

the power spectrum was

The origin of 1/f variations first discussed by Matthacus and Goldstein (1986) was reconsidered. An

alternate explanation was suggested in which these variations arose from the deformation of the

magnetic field by chaotic fluid turbulence in the solar wind.

Our results have important implications for both theory and analysis of observations. We have shown

that the interplanetary field variations in the 1/f region of the spectrum have non-Gaussian

distributions. In this case higher moments form irreducible independent quantities. Thus spectra of the

higher order correlation functions (polyspcctra)  are required to completely characterize these

variations,
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Figure Captions

Fig. 1. A distributions of the one hour averagd magnetic field in 1973. The x and z components arc

shown in panels a and b, magnitude is shown in panel c, log magnitude in panel d. The solid lines

show normal distributions with the same mean and variance as the sample.
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Fig. 2. The solar cycle variation of the statistical moments of the one hour distributions: (a,c,e) mean

value and variance; (b,d,f) skewness and kurtosis, The panel numbers have the same meaning as in

Fig. 1. Note that none of the quantities is Gaussian.

Fig. 3. The same as Figure 1 but for the three hour averaged quantities for the band passed data.

Fig. 4. The same as Figure 2 but for the three hour averaged quantities for the band passed data. Note

that none of the quantities is Gaussian.
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